

Aramid Bridge Code Review

Draft Findings and Recommendations Report Presented to:

Aramid Finance

January 18, 2023
Version: 1.2

Presented by:

NAGRAVISION SÀRL
Route de Genève 22-24
1033 Cheseaux-sur-Lausanne
Switzerland

FOR PUBLIC RELEASE

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 2 of 21

TABLE OF CONTENTS

TABLE OF CONTENTS ... 2

LIST OF FIGURES .. 2

LIST OF TABLES ... 2

EXECUTIVE SUMMARY ... 3

Overview ... 3

Key findings .. 3

Scope and Rules of Engagement ... 4

TECHNICAL ANALYSIS & FINDINGS .. 5

Findings .. 6

KS-ARDC-01 – One incorrect signature could result in rejected transaction 7

KS-ARDC-02 – Minimum signature threshold not set in Ethereum contracts.................................... 9

KS-ARDC-03 – Max Bridge fee not implemented .. 10

KS-ARDC-04 – Use of old Solidity version ... 11

KS-ARDS-01 – Hardcoded values in code ... 12

KS-ARDS-02 – Transaction cannot be reprocessed If release token fails 13

KS-ARDS-03 – Potential duplication of executioner processing .. 15

KS-ARDS-04 – Potential functionality description in TODO .. 17

KS-ARDS-05 – Outdated/unused/dead code to cleanup/remove .. 18

METHODOLOGY ... 19

Tools ... 19

KUDELSKI SECURITY CONTACTS ... 21

LIST OF FIGURES

Figure 1: Findings by Severity ... 5

LIST OF TABLES

Table 1: Scope ... 4
Table 2: Findings Overview ... 6

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 3 of 21

EXECUTIVE SUMMARY

Overview

Aramid Finance engaged Kudelski Security to perform a secure code assessment of the soldier app,
smart contracts and web app for the Aramid token bridge.

The assessment was conducted remotely by the Kudelski Security Team.
Testing took place on 22nd September - 28th October, 2022, and focused on the following objectives:

• Provide the customer with an assessment of their overall security posture and any risks that were
discovered with the smart contracts.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security
measures that are in place.

• To identify potential issues and include improvement recommendations based on the result of our
tests.

This report summarizes the engagement, tests performed, and findings. It also contains detailed
descriptions of the discovered vulnerabilities, steps the Kudelski Security Teams took to identify and
validate each issue, as well as any applicable recommendations for remediation.

Key findings

The following are the major themes and issues identified during the testing period. These, along with
other items, within the findings section, should be prioritized for remediation to reduce to the risk they
pose.

• Missed validation checks – the Ethereum smart contracts relied on the signature of soldiers for
various operations. These include releasing funds, adding and removing soldiers and tokens,
changing signature threshold and updating contracts. It was observed that smart contracts were
not verifying all the signatures passed to signature validation function and could result in an
incorrectly failing signature.

During the code review, the following positive observations were noted regarding the scope of the
engagement:

• The code was clean in general

• Extensive input validation was done in the code to make sure transaction is only processed if all
arguments are verified by soldiers.

• Tests were adequate.

• Engagement with the technical teams was strong, enriching, and responsive, which is significant
for performing a security review.

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 4 of 21

Scope and Rules of Engagement

Kudelski Security performed a code review of the soldier application, smart contracts and web app for
Aramid Finance. The following table documents the targets in scope for the engagement. No additional
systems or resources were in scope for this assessment.

The source code was supplied with the commit hashes in private repositories at:

• https://github.com/AramidFinance/bridge-soldier-nodejs-
app/commit/ad26b5d538fcea26da256896de6454c2970e26ef

• https://github.com/AramidFinance/bridge-ethereum-
assets/commit/1459d784be2455a0191b0c388807920e4b9a43c5

• https://github.com/AramidFinance/bridge-web-
app/commit/272385e9403844416300b911a98d71df84cdb2db

A further round of review was conducted on 4th January, 2023 following remediations on the following
commit hashes.

• https://github.com/AramidFinance/bridge-ethereum-
assets/tree/b1eca7157dd287bc07c84ba4405be0f4b2be2698

In-Scope Code

bridge-soldier-nodejs-app bridge-ethereum-assets

soldier/

├── algo

├── algo2algo

├── algo2eth

├── common

├── eth

├── eth2algo

├── eth2eth

├── interface

├── ipfs

├── p2p

├── store

└── main.ts

├── contracts
│ ├── AramidAlgoToken.sol

│ ├── AramidAlgoTokenMainnet.sol

│ ├── AramidAuroraToken.sol

│ ├── AramidAuroraTokenMainnet.sol

│ ├── AramidBitcoinToken.sol

│ ├── AramidBitcoinTokenMainnet.sol

│ ├── AramidDaoToken.sol

│ ├── AramidEthTokenMainnet.sol

│ ├── AramidMumbaiToken.sol

│ ├── AramidPolygonTokenMainnet.sol

│ ├── AramidRinkebyToken.sol

│ ├── AramidUSDToken.sol

│ ├── AramidUSDTokenMainnet.sol

│ ├── Bridge.sol

│ ├── BridgeGovernance.sol

│ ├── BridgeProxy.sol

│ ├── BridgeSignatureValidator.sol

│ ├── BridgeState.sol

│ ├── Migrations.sol

│ ├── WrappedAssetToken.sol

│ ├── WrappedAssetTokenMintable.sol

bridge-web-app

Table 1: Scope

https://github.com/AramidFinance/bridge-soldier-nodejs-app/commit/ad26b5d538fcea26da256896de6454c2970e26ef
https://github.com/AramidFinance/bridge-soldier-nodejs-app/commit/ad26b5d538fcea26da256896de6454c2970e26ef
https://github.com/AramidFinance/bridge-ethereum-assets/commit/1459d784be2455a0191b0c388807920e4b9a43c5
https://github.com/AramidFinance/bridge-ethereum-assets/commit/1459d784be2455a0191b0c388807920e4b9a43c5
https://github.com/AramidFinance/bridge-web-app/commit/272385e9403844416300b911a98d71df84cdb2db
https://github.com/AramidFinance/bridge-web-app/commit/272385e9403844416300b911a98d71df84cdb2db
https://github.com/AramidFinance/bridge-ethereum-assets/tree/b1eca7157dd287bc07c84ba4405be0f4b2be2698
https://github.com/AramidFinance/bridge-ethereum-assets/tree/b1eca7157dd287bc07c84ba4405be0f4b2be2698

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 5 of 21

TECHNICAL ANALYSIS & FINDINGS

During the Aramid Bridge Code Review, we discovered 2 findings that had a medium severity rating, as
well as 3 of low severity.

The following chart displays the findings by severity.

Figure 1: Findings by Severity

0 1 2 3 4 5

Info

Low

Medium

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 6 of 21

Findings

The Findings section provides detailed information on each of the findings, including methods of
discovery, explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

Severity Description Status

Ethereum Contracts

KS-ARDC-01 Medium
One incorrect signature could result in rejected
transaction

Remediated

KS-ARDC-02 Medium
Minimum signature threshold not set in Ethereum
contracts

Remediated

KS-ARDC-03 Low Max Bridge fee not implemented Acknowledged

KS-ARDC-04 Informational Use of old Solidity version Remediated

Soldier App

KS-ARDS-01 Low Hardcoded values in code Acknowledged

KS-ARDS-02 Low
Transaction cannot be reprocessed If release
token fails

Partially
Remediated

KS-ARDS-03 Informational Potential duplication of executioner processing Remediated

KS-ARDS-04 Informational Potential functionality description in TODO Remediated

KS-ARDS-05 Informational Outdated/unused/dead code to cleanup/remove Acknowledged

Table 2: Findings Overview

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 7 of 21

KS-ARDC-01 – One incorrect signature could result in rejected
transaction

Severity MEDIUM

Status REMEDIATED

Impact Likelihood Difficulty

Low Medium Moderate

Description

A set of off-chain nodes, called soldiers, watch token lock transactions, validate them, and issue
corresponding token release multisig transactions in the destination network and to the destination
address signalled in the token lock transaction. Soldiers exchange the transactions among them over
a p2p protocol, validate the transactions, and add their signatures. Release token transactions are
multisig, requiring N out of M signatures in order to be accepted by the destination chain.

It was observed that contrary to documentation the code was verifying only T out of T signatures.

Impact

Signature.length refers to the number of signatories of a particular transaction, while threshold

variable contains the minimum number of valid signatures required to pass the transaction. In the
validateSignatures() function only signatures until the threshold are being validated, while the

rest of the signatures are ignored. This means, even one invalid signature would invalidate the
transaction, which is against the logic of threshold signature.

contract BridgeSignatureValidator is BridgeState {
 function validateSignatures(
 bytes32 message,
 bytes[] memory signatures,
 mapping(address => bool) storage signedBy
) internal {
 require(
 signatures.length >= signaturesThreshold,
 "Not enough signatures"
);
 for (uint256 i = 0; i < signaturesThreshold; i++) {
 address recoveredAddress = recoverSigner(message, signatures[i]);

 require(soldiers[recoveredAddress], "Invalid signature");
 require(!signedBy[recoveredAddress], "Duplicated signature");

 signedBy[recoveredAddress] = true;
 }
 }

Affected Resources

• BridgeSignatureValidator.sol

• Bridge.sol

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 8 of 21

• BridgeGovernance.sol

Recommendation

As per the code it is possible that signatures passed to validateSignatures() function are more

than the set threshold. However, only signatures until the set threshold are being validated and rest
are not being validated.

It is recommended that loop should run until the signatures.length and each successful

verification should be counted until threshold is reached. This means that require condition (line 19)

need to be removed as it is possible for a signature verification to fail. Require condition should only

be implemented to make sure that signature is not reused as well as that number of verified
signatures are greater than or equal to threshold.

This is a very important function and is being used to add/remove tokens, add/remove soliders and
validate transactions. We recommend the following code for the validateSignatures() function.

 function validateSignatures(
 bytes32 message,
 bytes[] memory signatures,
 mapping(address => bool) storage signedBy
) internal {
 require(
 signatures.length >= signaturesThreshold,
 "Not enough signatures"
);
 uint8 thresholdcount = 0;
 for (uint256 i = 0; i < signatures.length; i++) {
 address recoveredAddress = recoverSigner(message, signatures[i]);
 if (soldiers[recoveredAddress] == true) {
 thresholdcount++;
 }
 //require(soldiers[recoveredAddress], "Invalid signature");
 require(!signedBy[recoveredAddress], "Duplicated signature");

 signedBy[recoveredAddress] = true;
 }
 require(thresholdcount >= signaturesThreshold);
 }

This function ensures that we check all the signatures passed into the function as well as that function
executes successfully if and only if number of verified signatures are equal to or more than the
threshold.

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 9 of 21

KS-ARDC-02 – Minimum signature threshold not set in Ethereum
contracts

Severity MEDIUM

Status REMEDIATED

Impact Likelihood Difficulty

High Low Hard

Description

Aramid bridge relies extensively on soliders who verify the transactions before a user can execute the
transaction to release the tokens. Soldiers are also used extensively for governance purpose.
Ethereum does not have default support of threshold signature. As a result, Aramid implemented its
own version of threshold signatures where smart contract verifies if a certain transaction is signed by
at least certain number of soldiers.

It was observed that there is no minimum threshold set for number of signatures required to perform a
transaction.

Impact

It is possible to set threshold to as low as 1 either intentionally or accidentally, therefore making the
threshold signature practically invalid.

Affected Resources

• BridgeGovernance.sol

Evidence

function changeSignatureThreshold(
 uint8 threshold,
 uint256 requestNonce,
 bytes[] memory signatures
) public onlySoldier validNonce(requestNonce) {
 validateSignatures(
 reconstructMessageUint8(threshold, requestNonce),
 signatures,
 signers[requestNonce]
);
 signaturesThreshold = threshold;
 emit LogThresholdChanged(threshold);
 }

Recommendation

It is recommended to set the minimum threshold to at least 50% or more of all soldiers.

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 10 of 21

KS-ARDC-03 – Max Bridge fee not implemented

Severity LOW

Status ACKNOWLEDGED

Impact Likelihood Difficulty

Low Low Hard

Description

Aramid charges bridge fee to the users for the transaction. This amount is calculated by the soldier
app and is locked on the Ethereum blockchain using Locktokens() function in bridge.sol

contract. It was observed that although the smart contract verifies if the bridge fee is greater than 0,
however there is no check on max bridge fee.

Impact

It is possible that, whether maliciously or due to market conditions, the bridge fee could become
unfeasibly high for users to transact.

Affected Resources

• Bridge.sol

Evidence

if (
 rootTokenAddr != feeTokenAddr &&
 feeAmount > 0 &&
 feeTokenAddr != address(0)
) {

else if (rootTokenAddr == feeTokenAddr && feeAmount > 0) {
 // 2 - Token used to pay fee is the same as token to bridge && fee > 0
 IERC20(rootTokenAddr).transferFrom(
 msg.sender,
 address(this),
 rootAmount + feeAmount
);

Recommendation

It is recommended to set the maximum fee amount and check the fee amount that is being locked in
the contract against the maximum fee.

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 11 of 21

KS-ARDC-04 – Use of old Solidity version

Severity INFORMATIONAL

Status REMEDIATED

Impact Likelihood Difficulty

- - -

Description

Outdated or weak components are in use by the application. These components may be part of a
programming library or underlying platform. These weaknesses are commonly targeted by attackers
because of the publicly available information on these vulnerabilities. It was observed that
Migration.sol allows versions with known vulnerabilities. Similarly, all other contracts use pragma
versions ^0.8.0, which should also be updated to latest known good version.

Affected Resource

• Migration.sol

Evidence

Known vulnerabilities for Solidity version 0.8 prior to 0.8.16.
https://docs.soliditylang.org/en/v0.8.16/bugs.html

pragma solidity >=0.4.22 <0.9.0;

Recommendation

File should be upgraded to use latest known good version.

https://docs.soliditylang.org/en/v0.8.16/bugs.html

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 12 of 21

KS-ARDS-01 – Hardcoded values in code

Severity LOW

Status ACKNOWLEDGED

Impact Likelihood Difficulty

Low Low Easy

Description

Specific system address was discovered in the code.
If such a code is public, this value is publicly readable by anyone.

Impact
Attackers may leverage this address to attempt to disrupt the normal traffic of the targeted service by
overwhelming the target or its surrounding infrastructure with a flood of Internet traffic (DDoS).

Evidence

Hardcoded address

Affected Resource

• p2p/createNode.js (Line 23)

Recommendation

By default, never store sensitive information in code.
All data relative to deployment/management activities should be stored in private/local configuration
files.

Reference
N/A

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 13 of 21

KS-ARDS-02 – Transaction cannot be reprocessed If release token
fails

Severity LOW

Status PARTIALLY REMEDIATED

Impact Likelihood Difficulty

Low Medium Hard

Description

Aramid bridge uses the lock and release mechanism to lock the funds on one blockchain and release
equivalent tokens (1:1 Mapping) on the other blockchain. The soldier apps continuously scan these
blockchains for new transactions and when a new transaction occurs on one blockchain, the soldiers
validate and process the transaction and the executioner (randomly selected among soldier nodes)
submits the transaction on the other blockchain. This transaction contains the signatures of the
soldiers and metadata of the transaction. User then uses this transaction to get the funds released on
the blockchain.

It was observed that soldiers set the transaction status as “Processed” upon submission to the
blockchain. Therefore, if the transaction fails due to invalid signatures then it cannot be reprocessed
by the soldiers as for the soldiers transaction status will be shown as “Processed”. This means the
user will not be able to get the tokens released. This can also happen if user is unable to submit the
transaction due to failure of internet connection or any other reasons and the max round until which
the user should have submitted the transaction expires.

Impact

User will not be able to get tokens released and it would need to be processed manually.

Evidence

Transaction cannot be reprocessed if submitted

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 14 of 21

Affected Resources

• p2p/process/processSignedPayloadMessage.ts (Lines 249-262)

Recommendation

Implement a function in soldier app to query the smart contract (on Ethereum blockchain) to check
the status of processed transactions to make sure that all transaction IDs signed by soldiers are
processed. Similar function can be implemented for Algorand blockchain to check the status of
certain transaction.

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 15 of 21

KS-ARDS-03 – Potential duplication of executioner processing

 Severity INFORMATIONAL

Status REMEDIATED

Impact Likelihood Difficulty

- - -

Description

An executioner is a soldier node that is randomly selected to submit a validated transaction to the
blockchain. Aramid selects the executioner for a transaction each 60 seconds. This selection is based
on the following code.

const executionerIndex = (parseInt(T) + parseInt(removeNonNumbers)) %

addrs.length;

Where T = new BigNumber(time.unix()).dividedBy(60).toFixed(0, 1);

RemoveNonNumbers = sourceTransactionId.replace(/[^\d.-]/g, '');

And address.length = number of soldiers.

Based on the public configuration parameters, It is possible that a soldiers take more than a minute to
validate, sign and submit the transaction to the blockchain. Therefore, two soldier nodes may get
selected as executioner.

This can happen if the time required to wait for the number of confirmations (rounds passed between
the time when transaction was inserted into blockchain and current round) is higher than the time
when a new executioner is selected. The public configuration file in the review required 3 rounds to
have passed between the round in which transaction was inserted and current round. Ethereum
blockchain has inter block time of 12 seconds. This means it was possible that 60 seconds will pass
during the transaction validation, signing and submission and as such, a new executioner could
resubmit the transaction.

Impact:

Submission of duplicated transaction will not impact the user funds as validity checks for duplicate
processing are implemented. However, this additional processing of transaction should be avoided.

Evidence

Executioner Selection

Affected Resources

• common/getExecutioner.ts (Line 19)

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 16 of 21

Recommendation

getExecutioner function should return same executioner for a transaction based on minimum time

it would take to execute a transaction. Based on existing configuration, we recommend it to be based
on the following equation:

 (RequiredConfirmationsRounds * interblocktime)

e.g. if required confirmations are 10 and interblock time is 12 seconds then there should be same
executioner for at least 2 minutes.

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 17 of 21

KS-ARDS-04 – Potential functionality description in TODO

Severity INFORMATIONAL

Status REMEDIATED

Impact Likelihood Difficulty

- - -

Description

Kudelski Security observed that the code has TODO pointing out that the implementation of checks
isn’t complete yet and needs to be implemented.

Impact
Describing missing logic could be used as a part of a sophisticated attack where missing
functionality could be used to crash or extract information from the application.

Evidence

Checks not yet implemented

Affected Resource

• p2p/process/processProofMessage.ts (Line 63)

Recommendation

This should be implemented or removed.

Reference
N/A

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 18 of 21

KS-ARDS-05 – Outdated/unused/dead code to cleanup/remove

Severity INFORMATIONAL

Status ACKNOWLEDGED

Impact Likelihood Difficulty

- - -

Description

Kudelski Security observed that a parameter is not used in a function. Either this parameter is
necessary - and should be used according to its purpose or it should be removed from the function
signature (and from all calling code)

Impact
Such code not being aligned with its documentation confuses both developers and reviewers.
Dead code that results from code that can never be executed is an indication of problems with the
source code that needs to be fixed and is an indication of poor quality.

Evidence

…

Unused parameter: doNotResubmit

Affected Resource

• Callee

o p2p/commands/sendPayload.ts (Lines 14, 17, 32)

• Caller

o algo/message/processITransfer.ts (Line 68)

o eth/watchEthEvents.ts (Line 71)

o p2p/commands/sendPayload.ts (Line 17)

o p2p/process/processSignedPayloadMessage.ts (Line 177, 362)

o timer/trackUnprocessedPayloads.ts (Line 49)

Recommendation

As this parameter no longer seemed necessary, the code should be cleaned up.

Reference
https://cwe.mitre.org/data/definitions/561.html

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 19 of 21

METHODOLOGY

During this source code review, the Kudelski Security Services team reviewed code within the project
within an appropriate IDE. During every review, the team spends considerable time working with the client
to determine correct and expected functionality, business logic, and content to ensure that findings
incorporate this business logic into each description and impact. Following this discovery phase the team
works through the following categories:

- Authentication

- Authorization and Access Control

- Auditing and Logging

- Injection and Tampering

- Configuration Issues

- Logic Flaws

- Cryptography

These categories incorporate common vulnerabilities such as the OWASP Top 10

Tools

The following tools were used during this portion of the test. A link for more information about the tool is
provided as well.

- Visual Studio Code

- Node

- Slither

- Mythril

- Solgraph

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 20 of 21

Vulnerability Scoring Systems

Kudelski Security utilizes a vulnerability scoring system based on impact of the vulnerability, likelihood of
an attack against the vulnerability, and the difficulty of executing an attack against the vulnerability based
on a high, medium, and low rating system

Impact
The overall effect of the vulnerability against the system or organization based on the areas of concern or
affected components discussed with the client during the scoping of the engagement.

High:
The vulnerability has a severe effect on the company and systems or has an affect within one of
the primary areas of concern noted by the client

Medium:
It is reasonable to assume that the vulnerability would have a measurable effect on the company
and systems that may cause minor financial or reputational damage.

Low:
There is little to no affect from the vulnerability being compromised. These vulnerabilities could
lead to complex attacks or create footholds used in more severe attacks.

Likelihood
The likelihood of an attacker discovering a vulnerability, exploiting it, and obtaining a foothold varies
based on a variety of factors including compensating controls, location of the application, availability of
commonly used exploits, and institutional knowledge

High:
It is extremely likely that this vulnerability will be discovered and abused

Medium:
It is likely that this vulnerability will be discovered and abused by a skilled attacker

Low:
It is unlikely that this vulnerability will be discovered or abused when discovered.

Difficulty
Difficulty is measured according to the ease of exploit by an attacker based on availability of readily
available exploits, knowledge of the system, and complexity of attack. It should be noted that a LOW
difficulty results in a HIGHER severity.

Easy:
The vulnerability is easy to exploit or has readily available techniques for exploit

Moderate:
The vulnerability is partially defended against, difficult to exploit, or requires a skilled attacker to
exploit.

Hard:
The vulnerability is difficult to exploit and requires advanced knowledge from a skilled attacker to
write an exploit

Severity
Severity is the overall score of the weakness or vulnerability as it is measured from Impact, Likelihood,
and Difficulty

Aramid Finance
Aramid Bridge Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 1.2 | 1/18/2023

 Page 21 of 21

KUDELSKI SECURITY CONTACTS

NAME POSITION CONTACT INFORMATION

Jamshed Memon Blockchain Expert jamshed.memon@kudelskisecurity.com

Ronan Le Gallic Lead Engineer ronan.legallic@nagra.com

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	EXECUTIVE SUMMARY
	Overview
	Key findings
	Scope and Rules of Engagement

	TECHNICAL ANALYSIS & FINDINGS
	Findings
	KS-ARDC-01 – One incorrect signature could result in rejected transaction
	KS-ARDC-02 – Minimum signature threshold not set in Ethereum contracts
	KS-ARDC-03 – Max Bridge fee not implemented
	KS-ARDC-04 – Use of old Solidity version

	KS-ARDS-01 – Hardcoded values in code
	KS-ARDS-02 – Transaction cannot be reprocessed If release token fails
	KS-ARDS-03 – Potential duplication of executioner processing
	KS-ARDS-04 – Potential functionality description in TODO
	KS-ARDS-05 – Outdated/unused/dead code to cleanup/remove

	METHODOLOGY
	Tools

	KUDELSKI SECURITY CONTACTS

